#include <bits/stdc++.h>
using namespace std;
class Node{
public:
int data;
Node *left,*right;
Node(int val){
data=val;
left=right=NULL;
}
};
class Btree{
public:
Node *root;
int max_sum_from_root_to_leaf=0,diameter=0;
std::vector<Node*> v;
std::vector<Node*> L;
std::vector<Node*> R;
std::map<int, Node*> mpt;
std::map<int, Node*> mpb;
Btree(){
root=NULL;
}
void preorder(Node *root){
Node *temp=root;
if(temp==NULL)
return;
cout<<temp->data<<" ";
preorder(temp->left);
preorder(temp->right);
}
void postorder(Node *root){
Node *temp=root;
if(temp==NULL)
return;
postorder(temp->left);
postorder(temp->right);
cout<<temp->data<<" ";
}
void inorder(Node *root){
Node *temp=root;
if(temp==NULL)
return;
inorder(temp->left);
cout<<temp->data<<" ";
inorder(temp->right);
}
void levelorder(Node* root){
queue<Node*> q;
q.push(root);
int k=0;
while(!q.empty()){
int count=q.size(),sum=0;
for(int i=0;i<count;i++){
Node *t=q.front();
cout<<t->data<<" ";sum+=t->data;
q.pop();
if(t->left)
q.push(t->left);
if(t->right)
q.push(t->right);
}
cout<<"---> sum of level "<<++k<<" = "<<sum<<endl;
}
}
int height(Node* root){
if(root==NULL)
return 0;
int lh=height(root->left);
int rh=height(root->right);
diameter=max(diameter,lh+rh);
return max(lh,rh)+1;
}
int getDiameter(Node* root){
diameter=0;
height(root);
return diameter;
}
void sumPath(Node* root,int sum=0){
if(root==NULL)
return;
if(root->left==NULL && root->right==NULL){
sum+=root->data;
max_sum_from_root_to_leaf=max(sum,max_sum_from_root_to_leaf);
return;
}
sumPath(root->left,sum+root->data);
sumPath(root->right,sum+root->data);
}
void Lview(Node* root){
queue<Node*> q;
q.push(root);
while(!q.empty()){
int count=q.size();
L.push_back(q.front());
for(int i=0;i<count;i++){
Node *t=q.front();
q.pop();
if(t->left)
q.push(t->left);
if(t->right)
q.push(t->right);
}
}
}
void Rview(Node* root){
queue<Node*> q;
q.push(root);
while(!q.empty()){
int count=q.size();
R.push_back(q.back());
for(int i=0;i<count;i++){
Node *t=q.front();
q.pop();
if(t->left)
q.push(t->left);
if(t->right)
q.push(t->right);
}
}
}
void Tview(Node* root,int hd){
/*
vector<Node*> T(L);
reverse(T.begin(),T.end());
for(auto it=R.begin()+1;it!=R.end();++it)
T.push_back(*it);
for(auto x:T)
cout<<x->data<<" ";
*/
if(root==NULL)
return;
if(!mpt.count(hd))
mpt[hd]=root;
Tview(root->left,hd-1);
Tview(root->right,hd+1);
}
void Bview(Node *root,int hd){
if(root==NULL)
return;
mpb[hd]=root;
Bview(root->left,hd-1);
Bview(root->right,hd+1);
}
void spiral(Node *root){
queue<Node*> q;
vector<Node*> sp;
q.push(root);
int level=0;
while(!q.empty()){
int count=q.size(),sum=0;
for(int i=0;i<count;i++){
Node *t=q.front();
sp.push_back(t);
q.pop();
if(t->left)
q.push(t->left);
if(t->right)
q.push(t->right);
}
level++;
if(level & 1)
reverse(sp.begin(),sp.end());
for(auto x:sp)
cout<<x->data<<" ";
sp.clear();
}
}
bool search(Node *root,int val){
if(root==NULL)
return 0;
bool ltree=search(root->left,val);
bool rtree=search(root->right,val);
return (root->data==val) or ltree or rtree;
}
};
int main()
{
Btree t;
t.root=new Node(10);
t.root->left=new Node(20);
t.root->right=new Node(30);
t.root->left->left=new Node(40);
t.root->left->right=new Node(50);
t.root->right->left=new Node(60);
t.root->right->right=new Node(70);
cout<<"Preorder: ";
t.preorder(t.root);
cout<<endl<<"Inorder: ";
t.inorder(t.root);
cout<<endl<<"Postorder: ";
t.postorder(t.root);
cout<<endl<<"Levelorder :"<<endl;
t.levelorder(t.root);
cout<<"Height of Btree = "<<t.height(t.root)<<endl;
cout<<"Diameter of Btree = "<<t.getDiameter(t.root)<<endl;
t.sumPath(t.root);
cout<<"max_sum_from_root_to_leaf = "<<t.max_sum_from_root_to_leaf<<endl;
cout<<"Left view of Btree : ";
t.Lview(t.root);
for(auto x:t.L)
cout<<x->data<<" ";
cout<<endl;
cout<<"Right view of Btree : ";
t.Rview(t.root);
for(auto x:t.R)
cout<<x->data<<" ";
cout<<endl;
cout<<"Top view of Btree : ";
t.Tview(t.root,0);
for(auto x:t.mpt)
cout<<x.second->data<<" ";
cout<<endl;
cout<<"Bottom view of Btree : ";
t.Bview(t.root,0);
for(auto x:t.mpb)
cout<<x.second->data<<" ";
cout<<endl;
cout<<"Elements in spiral order : ";
t.spiral(t.root);
cout<<endl;
if(t.search(t.root,33))
cout<<"Present";
else
cout<<"Absent";
return 0;
} Write, Run & Share C++ code online using OneCompiler's C++ online compiler for free. It's one of the robust, feature-rich online compilers for C++ language, running on the latest version 17. Getting started with the OneCompiler's C++ compiler is simple and pretty fast. The editor shows sample boilerplate code when you choose language as C++ and start coding!
OneCompiler's C++ online compiler supports stdin and users can give inputs to programs using the STDIN textbox under the I/O tab. Following is a sample program which takes name as input and print your name with hello.
#include <iostream>
#include <string>
using namespace std;
int main()
{
string name;
cout << "Enter name:";
getline (cin, name);
cout << "Hello " << name;
return 0;
}
C++ is a widely used middle-level programming language.
When ever you want to perform a set of operations based on a condition If-Else is used.
if(conditional-expression) {
//code
}
else {
//code
}
You can also use if-else for nested Ifs and If-Else-If ladder when multiple conditions are to be performed on a single variable.
Switch is an alternative to If-Else-If ladder.
switch(conditional-expression){
case value1:
// code
break; // optional
case value2:
// code
break; // optional
......
default:
code to be executed when all the above cases are not matched;
}
For loop is used to iterate a set of statements based on a condition.
for(Initialization; Condition; Increment/decrement){
//code
}
While is also used to iterate a set of statements based on a condition. Usually while is preferred when number of iterations are not known in advance.
while (condition) {
// code
}
Do-while is also used to iterate a set of statements based on a condition. It is mostly used when you need to execute the statements atleast once.
do {
// code
} while (condition);
Function is a sub-routine which contains set of statements. Usually functions are written when multiple calls are required to same set of statements which increases re-usuability and modularity. Function gets run only when it is called.
return_type function_name(parameters);
function_name (parameters)
return_type function_name(parameters) {
// code
}