// C++ program for different tree traversals #include <iostream> using namespace std; /* A binary tree node has data, pointer to left child and a pointer to right child */ struct Node { int data; struct Node *left, *right; Node(int data) { this->data = data; left = right = NULL; } }; /* Given a binary tree, print its nodes according to the "bottom-up" postorder traversal. */ void printPostorder(struct Node* node) { if (node == NULL) return; // first recur on left subtree printPostorder(node->left); // then recur on right subtree printPostorder(node->right); // now deal with the node cout << node->data << " "; } /* Given a binary tree, print its nodes in inorder*/ void printInorder(struct Node* node) { if (node == NULL) return; /* first recur on left child */ printInorder(node->left); /* then print the data of node */ cout << node->data << " "; /* now recur on right child */ printInorder(node->right); } /* Given a binary tree, print its nodes in preorder*/ void printPreorder(struct Node* node) { if (node == NULL) return; /* first print data of node */ cout << node->data << " "; /* then recur on left sutree */ printPreorder(node->left); /* now recur on right subtree */ printPreorder(node->right); } /* Driver program to test above functions*/ int main() { struct Node* root = new Node(1); root->left = new Node(2); root->right = new Node(3); root->left->left = new Node(4); root->left->right = new Node(5); cout << "\nPreorder traversal of binary tree is \n"; printPreorder(root); cout << "\nInorder traversal of binary tree is \n"; printInorder(root); cout << "\nPostorder traversal of binary tree is \n"; printPostorder(root); return 0; }
Write, Run & Share C++ code online using OneCompiler's C++ online compiler for free. It's one of the robust, feature-rich online compilers for C++ language, running on the latest version 17. Getting started with the OneCompiler's C++ compiler is simple and pretty fast. The editor shows sample boilerplate code when you choose language as C++
and start coding!
OneCompiler's C++ online compiler supports stdin and users can give inputs to programs using the STDIN textbox under the I/O tab. Following is a sample program which takes name as input and print your name with hello.
#include <iostream>
#include <string>
using namespace std;
int main()
{
string name;
cout << "Enter name:";
getline (cin, name);
cout << "Hello " << name;
return 0;
}
C++ is a widely used middle-level programming language.
When ever you want to perform a set of operations based on a condition If-Else is used.
if(conditional-expression) {
//code
}
else {
//code
}
You can also use if-else for nested Ifs and If-Else-If ladder when multiple conditions are to be performed on a single variable.
Switch is an alternative to If-Else-If ladder.
switch(conditional-expression){
case value1:
// code
break; // optional
case value2:
// code
break; // optional
......
default:
code to be executed when all the above cases are not matched;
}
For loop is used to iterate a set of statements based on a condition.
for(Initialization; Condition; Increment/decrement){
//code
}
While is also used to iterate a set of statements based on a condition. Usually while is preferred when number of iterations are not known in advance.
while (condition) {
// code
}
Do-while is also used to iterate a set of statements based on a condition. It is mostly used when you need to execute the statements atleast once.
do {
// code
} while (condition);
Function is a sub-routine which contains set of statements. Usually functions are written when multiple calls are required to same set of statements which increases re-usuability and modularity. Function gets run only when it is called.
return_type function_name(parameters);
function_name (parameters)
return_type function_name(parameters) {
// code
}