All Python code
Basic program using python
1)Program to print multiplication table for given no.
Solution-
Program published on https://beginnersbook.com
Python Program to Print Multiplication Table of a Number
num = int(input("Enter the number: "))
print("Multiplication Table of", num)
for i in range(1, 11):
print(num,"X",i,"=",num * i)
Output:
Enter the number: 6
Multiplication Table of 6
6 X 1 = 6
6 X 2 = 12
6 X 3 = 18
6 X 4 = 24
6 X 5 = 30
6 X 6 = 36
6 X 7 = 42
6 X 8 = 48
6 X 9 = 54
6 X 10 = 60
- )Program to check whether the given no is prime or not
Solution-
Python program to check if the input number is prime or not
num = 407
take input from the user
num = int(input("Enter a number: "))
prime numbers are greater than 1
if num > 1:
check for factors
for i in range(2,num):
if (num % i) == 0:
print(num,"is not a prime number")
print(i,"times",num//i,"is",num)
break
else:
print(num,"is a prime number")
if input number is less than
or equal to 1, it is not prime
else:
print(num,"is not a prime number")
Output
407 is not a prime number
11 times 37 is 407
3)Program to find factorial of the given no
Solution-
Python program to find the factorial of a number provided by the user.
change the value for a different result
num = 7
uncomment to take input from the user
#num = int(input("Enter a number: "))
factorial = 1
check if the number is negative, positive or zero
if num < 0:
print("Sorry, factorial does not exist for negative numbers")
elif num == 0:
print("The factorial of 0 is 1")
else:
for i in range(1,num + 1):
factorial = factorial*i
print("The factorial of",num,"is",factorial)
Output
The factorial of 7 is 5040
4)Program to Illusrate different set operations
Solution-
Program to perform different set operations like in mathematics
define three sets
E = {0, 2, 4, 6, 8};
N = {1, 2, 3, 4, 5};
set union
print("Union of E and N is",E | N)
set intersection
print("Intersection of E and N is",E & N)
set difference
print("Difference of E and N is",E - N)
set symmetric difference
print("Symmetric difference of E and N is",E ^ N)
Output
Union of E and N is {0, 1, 2, 3, 4, 5, 6, 8}
Intersection of E and N is {2, 4}
Difference of E and N is {8, 0, 6}
Symmetric difference of E and N is {0, 1, 3, 5, 6, 8}
5)Program to implement Depth first Search Traversal
Solution-
Python3 program to print DFS traversal
from a given given graph
from collections import defaultdict
This class represents a directed graph using
adjacency list representation
class Graph:
# Constructor
def __init__(self):
# default dictionary to store graph
self.graph = defaultdict(list)
# function to add an edge to graph
def addEdge(self, u, v):
self.graph[u].append(v)
# A function used by DFS
def DFSUtil(self, v, visited):
# Mark the current node as visited
# and print it
visited[v] = True
print(v, end = ' ')
# Recur for all the vertices
# adjacent to this vertex
for i in self.graph[v]:
if visited[i] == False:
self.DFSUtil(i, visited)
# The function to do DFS traversal. It uses
# recursive DFSUtil()
def DFS(self, v):
# Mark all the vertices as not visited
visited = [False] * (len(self.graph))
# Call the recursive helper function
# to print DFS traversal
self.DFSUtil(v, visited)
Driver code
Create a graph given
in the above diagram
g = Graph()
g.addEdge(0, 1)
g.addEdge(0, 2)
g.addEdge(1, 2)
g.addEdge(2, 0)
g.addEdge(2, 3)
g.addEdge(3, 3)
print("Following is DFS from (starting from vertex 2)")
g.DFS(2)
Output:
Following is Depth First Traversal (starting from vertex 2)
2 0 1 3
6)Program to Implement Breadth first search Transversal
Solution-
Python3 Program to print BFS traversal
from a given source vertex. BFS(int s)
traverses vertices reachable from s.
from collections import defaultdict
This class represents a directed graph
using adjacency list representation
class Graph:
# Constructor
def __init__(self):
# default dictionary to store graph
self.graph = defaultdict(list)
# function to add an edge to graph
def addEdge(self,u,v):
self.graph[u].append(v)
# Function to print a BFS of graph
def BFS(self, s):
# Mark all the vertices as not visited
visited = [False] * (len(self.graph))
# Create a queue for BFS
queue = []
# Mark the source node as
# visited and enqueue it
queue.append(s)
visited[s] = True
while queue:
# Dequeue a vertex from
# queue and print it
s = queue.pop(0)
print (s, end = " ")
# Get all adjacent vertices of the
# dequeued vertex s. If a adjacent
# has not been visited, then mark it
# visited and enqueue it
for i in self.graph[s]:
if visited[i] == False:
queue.append(i)
visited[i] = True
Driver code
Create a graph given in
the above diagram
g = Graph()
g.addEdge(0, 1)
g.addEdge(0, 2)
g.addEdge(1, 2)
g.addEdge(2, 0)
g.addEdge(2, 3)
g.addEdge(3, 3)
print ("Following is Breadth First Traversal"
" (starting from vertex 2)")
g.BFS(2)
Output:
Following is Breadth First Traversal (starting from vertex 2)
2 0 3 1
7)Program to Implement water jug Problem
Solution-
This function is used to initialize the
dictionary elements with a default value.
from collections import defaultdict
jug1 and jug2 contain the value
for max capacity in respective jugs
and aim is the amount of water to be measured.
jug1, jug2, aim = 4, 3, 2
Initialize dictionary with
default value as false.
visited = defaultdict(lambda: False)
Recursive function which prints the
intermediate steps to reach the final
solution and return boolean value
(True if solution is possible, otherwise False).
amt1 and amt2 are the amount of water present
in both jugs at a certain point of time.
def waterJugSolver(amt1, amt2):
# Checks for our goal and
# returns true if achieved.
if (amt1 == aim and amt2 == 0) or (amt2 == aim and amt1 == 0):
print(amt1, amt2)
return True
# Checks if we have already visited the
# combination or not. If not, then it proceeds further.
if visited[(amt1, amt2)] == False:
print(amt1, amt2)
# Changes the boolean value of
# the combination as it is visited.
visited[(amt1, amt2)] = True
# Check for all the 6 possibilities and
# see if a solution is found in any one of them.
return (waterJugSolver(0, amt2) or
waterJugSolver(amt1, 0) or
waterJugSolver(jug1, amt2) or
waterJugSolver(amt1, jug2) or
waterJugSolver(amt1 + min(amt2, (jug1-amt1)),
amt2 - min(amt2, (jug1-amt1))) or
waterJugSolver(amt1 - min(amt1, (jug2-amt2)),
amt2 + min(amt1, (jug2-amt2))))
# Return False if the combination is
# already visited to avoid repetition otherwise
# recursion will enter an infinite loop.
else:
return False
print("Steps: ")
Call the function and pass the
initial amount of water present in both jugs.
waterJugSolver(0, 0)
Output:
Steps:
0 0
4 0
4 3
0 3
3 0
3 3
4 2
0 2
8)Program to Implement K nearest Neigbor algorithm
Solution-
import unicodecsv
import random
import operator
import math
#getdata() function definition
def getdata(filename):
with open(filename,'rb') as f:
reader = unicodecsv.reader(f)
return list(reader)
#random train test data split function definition
def shuffle(i_data):
random.shuffle(i_data)
train_data = i_data[:int(0.730)]
test_data = i_data[int(0.730):]
return train_data, test_data
def euclideanDist(x, xi):
d = 0.0
for i in range(len(x)-1):
d += pow((float(x[i])-float(xi[i])),2) #euclidean distance
d = math.sqrt(d)
return d
#KNN prediction and model training
def knn_predict(test_data, train_data, k_value):
for i in test_data:
eu_Distance =[]
knn = []
good = 0
bad = 0
for j in train_data:
eu_dist = euclideanDist(i, j)
eu_Distance.append((j[5], eu_dist))
eu_Distance.sort(key = operator.itemgetter(1))
knn = eu_Distance[:k_value]
for k in knn:
if k[0] =='g':
good += 1
else:
bad +=1
if good > bad:
i.append('g')
elif good < bad:
i.append('b')
else:
i.append('NaN')
#Accuracy calculation function
def accuracy(test_data):
correct = 0
for i in test_data:
if i[5] == i[6]:
correct += 1
accuracy = float(correct)/len(test_data) *100 #accuracy
return accuracy
dataset = getdata('i_data_sample_30.csv') #getdata function call with csv file as parameter
train_dataset, test_dataset = shuffle(dataset) #train test data split
K = 5 # Assumed K value
knn_predict(test_dataset, train_dataset, K)
print test_dataset
print "Accuracy : ",accuracy(test_dataset)
9)Program to Implement regression algorithm
Solution-
import numpy as np
import matplotlib.pyplot as plt
def estimate_coef(x, y):
# number of observations/points
n = np.size(x)
# mean of x and y vector
m_x, m_y = np.mean(x), np.mean(y)
# calculating cross-deviation and deviation about x
SS_xy = np.sum(y*x) - n*m_y*m_x
SS_xx = np.sum(x*x) - n*m_x*m_x
# calculating regression coefficients
b_1 = SS_xy / SS_xx
b_0 = m_y - b_1*m_x
return(b_0, b_1)
def plot_regression_line(x, y, b):
# plotting the actual points as scatter plot
plt.scatter(x, y, color = "m",
marker = "o", s = 30)
# predicted response vector
y_pred = b[0] + b[1]*x
# plotting the regression line
plt.plot(x, y_pred, color = "g")
# putting labels
plt.xlabel('x')
plt.ylabel('y')
# function to show plot
plt.show()
def main():
# observations
x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
y = np.array([1, 3, 2, 5, 7, 8, 8, 9, 10, 12])
# estimating coefficients
b = estimate_coef(x, y)
print("Estimated coefficients:\nb_0 = {} \
\nb_1 = {}".format(b[0], b[1]))
# plotting regression line
plot_regression_line(x, y, b)
if name == "main":
main()
Output :
Estimated coefficients:
b_0 = -0.0586206896552
b_1 = 1.45747126437
10)Program to Implement Random forest algorithm
Solution-
Random Forest Algorithm on Sonar Dataset
from random import seed
from random import randrange
from csv import reader
from math import sqrt
Load a CSV file
def load_csv(filename):
dataset = list()
with open(filename, 'r') as file:
csv_reader = reader(file)
for row in csv_reader:
if not row:
continue
dataset.append(row)
return dataset
Convert string column to float
def str_column_to_float(dataset, column):
for row in dataset:
row[column] = float(row[column].strip())
Convert string column to integer
def str_column_to_int(dataset, column):
class_values = [row[column] for row in dataset]
unique = set(class_values)
lookup = dict()
for i, value in enumerate(unique):
lookup[value] = i
for row in dataset:
row[column] = lookup[row[column]]
return lookup
Split a dataset into k folds
def cross_validation_split(dataset, n_folds):
dataset_split = list()
dataset_copy = list(dataset)
fold_size = int(len(dataset) / n_folds)
for i in range(n_folds):
fold = list()
while len(fold) < fold_size:
index = randrange(len(dataset_copy))
fold.append(dataset_copy.pop(index))
dataset_split.append(fold)
return dataset_split
Calculate accuracy percentage
def accuracy_metric(actual, predicted):
correct = 0
for i in range(len(actual)):
if actual[i] == predicted[i]:
correct += 1
return correct / float(len(actual)) * 100.0
Evaluate an algorithm using a cross validation split
def evaluate_algorithm(dataset, algorithm, n_folds, *args):
folds = cross_validation_split(dataset, n_folds)
scores = list()
for fold in folds:
train_set = list(folds)
train_set.remove(fold)
train_set = sum(train_set, [])
test_set = list()
for row in fold:
row_copy = list(row)
test_set.append(row_copy)
row_copy[-1] = None
predicted = algorithm(train_set, test_set, *args)
actual = [row[-1] for row in fold]
accuracy = accuracy_metric(actual, predicted)
scores.append(accuracy)
return scores
Split a dataset based on an attribute and an attribute value
def test_split(index, value, dataset):
left, right = list(), list()
for row in dataset:
if row[index] < value:
left.append(row)
else:
right.append(row)
return left, right
Calculate the Gini index for a split dataset
def gini_index(groups, classes):
# count all samples at split point
n_instances = float(sum([len(group) for group in groups]))
# sum weighted Gini index for each group
gini = 0.0
for group in groups:
size = float(len(group))
# avoid divide by zero
if size == 0:
continue
score = 0.0
# score the group based on the score for each class
for class_val in classes:
p = [row[-1] for row in group].count(class_val) / size
score += p * p
# weight the group score by its relative size
gini += (1.0 - score) * (size / n_instances)
return gini
Select the best split point for a dataset
def get_split(dataset, n_features):
class_values = list(set(row[-1] for row in dataset))
b_index, b_value, b_score, b_groups = 999, 999, 999, None
features = list()
while len(features) < n_features:
index = randrange(len(dataset[0])-1)
if index not in features:
features.append(index)
for index in features:
for row in dataset:
groups = test_split(index, row[index], dataset)
gini = gini_index(groups, class_values)
if gini < b_score:
b_index, b_value, b_score, b_groups = index, row[index], gini, groups
return {'index':b_index, 'value':b_value, 'groups':b_groups}
Create a terminal node value
def to_terminal(group):
outcomes = [row[-1] for row in group]
return max(set(outcomes), key=outcomes.count)
Create child splits for a node or make terminal
def split(node, max_depth, min_size, n_features, depth):
left, right = node['groups']
del(node['groups'])
# check for a no split
if not left or not right:
node['left'] = node['right'] = to_terminal(left + right)
return
# check for max depth
if depth >= max_depth:
node['left'], node['right'] = to_terminal(left), to_terminal(right)
return
# process left child
if len(left) <= min_size:
node['left'] = to_terminal(left)
else:
node['left'] = get_split(left, n_features)
split(node['left'], max_depth, min_size, n_features, depth+1)
# process right child
if len(right) <= min_size:
node['right'] = to_terminal(right)
else:
node['right'] = get_split(right, n_features)
split(node['right'], max_depth, min_size, n_features, depth+1)
Build a decision tree
def build_tree(train, max_depth, min_size, n_features):
root = get_split(train, n_features)
split(root, max_depth, min_size, n_features, 1)
return root
Make a prediction with a decision tree
def predict(node, row):
if row[node['index']] < node['value']:
if isinstance(node['left'], dict):
return predict(node['left'], row)
else:
return node['left']
else:
if isinstance(node['right'], dict):
return predict(node['right'], row)
else:
return node['right']
Create a random subsample from the dataset with replacement
def subsample(dataset, ratio):
sample = list()
n_sample = round(len(dataset) * ratio)
while len(sample) < n_sample:
index = randrange(len(dataset))
sample.append(dataset[index])
return sample
Make a prediction with a list of bagged trees
def bagging_predict(trees, row):
predictions = [predict(tree, row) for tree in trees]
return max(set(predictions), key=predictions.count)
Random Forest Algorithm
def random_forest(train, test, max_depth, min_size, sample_size, n_trees, n_features):
trees = list()
for i in range(n_trees):
sample = subsample(train, sample_size)
tree = build_tree(sample, max_depth, min_size, n_features)
trees.append(tree)
predictions = [bagging_predict(trees, row) for row in test]
return(predictions)
Test the random forest algorithm
seed(2)
load and prepare data
filename = 'sonar.all-data.csv'
dataset = load_csv(filename)
convert string attributes to integers
for i in range(0, len(dataset[0])-1):
str_column_to_float(dataset, i)
convert class column to integers
str_column_to_int(dataset, len(dataset[0])-1)
evaluate algorithm
n_folds = 5
max_depth = 10
min_size = 1
sample_size = 1.0
n_features = int(sqrt(len(dataset[0])-1))
for n_trees in [1, 5, 10]:
scores = evaluate_algorithm(dataset, random_forest, n_folds, max_depth, min_size, sample_size, n_trees, n_features)
print('Trees: %d' % n_trees)
print('Scores: %s' % scores)
print('Mean Accuracy: %.3f%%' % (sum(scores)/float(len(scores))))